
Cfpeek User Manual
version 1.2, 6 January 2021

Sergey Poznyakoff.

Copyright c© 2011–2021 Sergey Poznyakoff
Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.3 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with the Front-Cover texts being “Cfpeek User Manual”, and with
the Back-Cover Texts as in (a) below. A copy of the license is included in
the section entitled “GNU Free Documentation License”.
(a) The Back-Cover Text is: “You have freedom to copy and modify this
manual, like Free Software.”

i

Short Contents

1 Introduction . 1

2 Overview of this Manual . 3

3 Tutorial . 5

4 Supported Configuration File Formats 17

5 Cfpeek Command Line Syntax . 25

6 Exit Codes . 31

7 Scripting . 33

8 How to Report a Bug . 37

A GNU Free Documentation License . 39

Concept Index . 47

iii

Table of Contents

1 Introduction . 1

2 Overview of this Manual . 3

3 Tutorial . 5
3.1 Basic Notions . 5
3.2 Pathnames . 5
3.3 Example Configuration . 6
3.4 Listing the Entire File . 7
3.5 Statement Lookups . 8
3.6 Pattern Lookups . 10
3.7 Using Various Parsers . 10
3.8 Specifying Nodes to Output . 10
3.9 Using Scripts . 11

3.9.1 Example: Converter to GIT Configuration Format 13

4 Supported Configuration File Formats 17
4.1 Grecs Configuration File . 17

4.1.1 Comments . 17
4.1.2 Pragmatic Comments . 17
4.1.3 Statements . 18
4.1.4 Preprocessor . 20

4.2 Path Configuration File . 21
4.3 BIND Configuration File . 21
4.4 DHCPD Configuration File . 22
4.5 MeTA1 Configuration File . 22
4.6 GIT Configuration File . 23

5 Cfpeek Command Line Syntax 25
5.1 Patterns . 25
5.2 Output Control . 26
5.3 Modifiers . 27
5.4 Scripting Options . 28
5.5 Preprocessor Control Options . 28
5.6 Debugging Options . 29
5.7 Informational Options . 29

6 Exit Codes . 31

iv Cfpeek User Manual

7 Scripting . 33

8 How to Report a Bug . 37

Appendix A GNU Free Documentation License
. 39

A.1 ADDENDUM: How to use this License for your documents 46

Concept Index . 47

Chapter 1: Introduction 1

1 Introduction

Many programs keep their configurations in files with hierarchical structure.
Such files normally define sections, which keep logically separated blocks of
statements. These statements may in turn contain subsections, and so on.
On the lowest level of hierarchy are simple statements, which normally define
some basic configuration settings.

Quite often a need arises to parse such files outside of their owner pro-
gram. For example, one may need to retrieve some configuration settings to
use them in a start-up script for that program, to produce a similar configu-
ration file with some settings changed in order to use it on another machine,
or to convert entire file into another format for interaction with some other
utility.

Cfpeek is a utility designed to handle any of these tasks.

Chapter 2: Overview of this Manual 3

2 Overview of this Manual

This book consists of the three main parts. The first part is a tutorial, which
provides a gentle (as far as possible) introduction for those who are new to
cfpeek. The tutorial should help the reader to familiarize himself with the
program and to start using it. It does not, however, cover some of the less
frequently used features of cfpeek.

The chapters that follow complement the tutorial. They describe various
input file formats understood by the program and summarize command line
syntax and options available to it. These two chapters can be used as a
reference by both beginners and for users familiar with the package.

Chapter 3: Tutorial 5

3 Tutorial

The following typographic conventions are used throughout this tutorial.
In the examples, ‘$’ represents a typical shell prompt. It precedes lines

you should type. Both command line and lines which represent the program
output are shown in ‘this font’.

The Scheme code is shown as follows:
(do it)

In examples, the ⇒ symbol indicates the value of a variable or result of
a function invocation, as in:

x ⇒ 2

3.1 Basic Notions
A structured configuration file contains entities of two basic types. First of
them is simple statement. A simple statement conceptually consists of an
identifier (or keyword) and a value. Depending on the syntactic require-
ments, some special token may be required between them (such as an equals
sign, for example), or at the end of the statement. The value, though we
use the term in singular, is not necessarily a single scalar value, it may as
well be a list of values (the exact form of that list depends on the particular
syntax of the configuration file).

Another basic entity is compound statement, also known as block state-
ment or section. Compound statement is used for logical grouping of other
statements. It consists of identifier, an optional tag and a list of statements.
The tag, if present, is similar to the value in simple statements. The same
notes that we made about values apply to tags as well. Tags serve to discern
between the statements having the same identifier. The list of statements
may include statements of both kinds: simple as well as compound ones.
Thus, compound statements form a tree-like structure of arbitrary depth,
with simple statements as leaf nodes.

Each compound statement can have any number of subordinate state-
ments, which are called its child statements. Each statement (no matter
simple or compound) has only one parent statement, i.e. a compound state-
ment of which it is a child.

A special implicit statement, called root statement, serves as the parent
for the statements at the topmost level of hierarchy.

3.2 Pathnames
Given this hierarchical structure, each statement can be identified by the
list of keywords and values (when present) of all compound statements that
must be traversed in order to reach that statement. Such a list, written
according to a set of conventions, is called a full pathname of the statement.
The conventions are:

6 Cfpeek User Manual

1. Pathname is written from top down.

2. An untagged statement is represented by its identifier.

3. A tagged statement is represented by its identifier, immediately followed
by an equals sign, followed by the tag.

4. Identifiers and values which contain whitespace, double quotes or dots
are enclosed in double quotes.

5. Within double quotes, a double quote is represented as ‘\"’ and a back-
slash is represented as ‘\\’.

6. Pathname components are separated by dots.

A pathname which begins with a component separator (‘.’) is called
absolute pathname and identifies the statement with relation to the topmost
level of hierarchy.

A pathname beginning with an identifier is called relative and identifies
the statement in relation to the statement represented by that identifier.

Examples of absolute pathnames are:

.database.description

.acl=global.deny

.view=external.zone=com.type

Examples of relative pathnames are:

description
zone=com.type

3.3 Example Configuration
The following configuration file will assist us in further discussion. Its syntax
is fairly straightforward:

A simple statement is written as identifier followed value. The two parts
are separated by any amount of whitespace. Simple statements are termi-
nated by semicolon.

A compound statement is written as identifier followed by a list of sub-
ordinate statements in curly braces. A tag (if present) is put between the
identifier and the opening curly brace.

These syntax conventions roughly correspond to the Grecs configuration
format, which cfpeek assumes by default (see Section 4.1 [grecs], page 17).

Chapter 3: Tutorial 7

user smith;
group mail;
pidfile "/var/run/example";

logging {
facility daemon;
tag example;

}

program a {
command "a.out";
logging {

facility local0;
tag a;

}
}

program b {
command "b.out";
wait yes;
pidfile /var/run/b.pid;

}

Example 3.1: Sample configuration file

3.4 Listing the Entire File
The only argument cfpeek requires is the name of the file to parse. If no
other arguments are given, it produces on the standard output a listing of
that file in pathname-value form. Each simple statement in the input file is
represented by a single line in the output listing. The line consists of two
main parts: the full pathname of that statement and its value. The two
parts are separated by a colon and space character. For example:

$ cfpeek sample.conf
.user: smith
.group: mail
.pidfile: /var/run/example
.logging.facility: daemon
.logging.tag: example
.program="a".command: a.out
.program="a".logging.facility: local0
.program="a".logging.tag: a
.program="b".command: b.out
.program="b".wait: yes
.program="b".pidfile: /var/run/b.pid

8 Cfpeek User Manual

This output can be customized via the --format (-H) command line
option. This option takes a list of output flags, each of which modifies some
aspect of the output. Most output flags are boolean, i.e. they enable or
disable the given feature. To disable the feature, the flag must be prefixed
with ‘no’.

To list only the pathnames, use
$ cfpeek --format=path sample.conf
.user
.group
.pidfile
.logging.facility
.logging.tag
.program="a".command
.program="a".logging.facility
.program="a".logging.tag
.program="b".command
.program="b".wait
.program="b".pidfile

The default output is equivalent to --format=path,value,descend.
The flags ‘path’ and ‘value’ mean to print the pathname of the statement

and its value. The ‘descend’ flag affects the output of compound nodes. If
this flag is set and a node matching the key is a compound node, cfpeek
will output this node and all nodes below it (i.e. its descendant nodes). The
‘descend’ flag is meaningful only if at least one lookup key is supplied.

You can also use --format to change the default component delimiter.
For example, to use slash to delimit components:

$ cfpeek --format=delim=/ sample.conf
/user: smith
/group: mail
/pidfile: /var/run/example
/logging/facility: daemon
/logging/tag: example
/program="a"/command: a.out
/program="a"/logging/facility: local0
/program="a"/logging/tag: a
/program="b"/command: b.out
/program="b"/wait: yes
/program="b"/pidfile: /var/run/b.pid

3.5 Statement Lookups
When given more than one argument, cfpeek treats the rest of arguments
as search keys. It then searches for statements with pathnames matching
each of the keys and outputs them. A key can be either a pathname, or a
pattern.

Chapter 3: Tutorial 9

The following command looks for the ‘pidfile’ statement at the topmost
level of hierarchy and prints it:

$ cfpeek sample.conf .pidfile
.pidfile: /var/run/example

As you see, it uses the same output format as with full listings. If you wish
to change it, use the --format option, introduced in the previous section.
For example, to retrieve only the value:

$ cfpeek --format=value sample.conf .pidfile
/var/run/example

This approach is quite common when cfpeek is used in shell scripts. It
will be illustrated in more detail below.

If a key is not found, cfpeek prints a message on the standard error and
starts searching for the next key (if any). When all keys are exhausted, the
program exits with status 1 to indicate that some of them have not been
found. To suppress the diagnostics output, use the --quiet (-q) option.

To illustrate all this, the following example shows how to use cfpeek in
a start-up script to check whether a program has already been started and
to bring it down, if requested:

#! /bin/sh
pidfile=‘cfpeek -q --format=value sample.conf .pidfile‘

if test -f $pidfile; then
pid=‘head -1 $pidfile‘

else
pid=

fi

case $1 in
start) if test -n "$pid"; then

echo >&2 "the program is already running"
else
start the program
sample-start

fi
;;

status) if test -n "$pid"; then
echo "program is running at pid $pid"

else
echo "program is not running"

fi
;;

stop) test -n "$pid" && kill -TERM $pid
;;

esac

10 Cfpeek User Manual

3.6 Pattern Lookups
Apart from literal pathname, a pathname pattern is allowed as a key. A
pattern can contain wildcards in place of path components. Two wildcards
are defined: ‘*’ and ‘%’. A ‘%’ matches any single keyword:

$ cfpeek sample.conf .%.pidfile
.program="b".pidfile: /var/run/b.pid

A ‘*’ wildcard matches zero or more keywords appearing in its place:
$ cfpeek sample.conf .*.pidfile
.pidfile: /var/run/example
.program="b".pidfile: /var/run/b.pid

In addition to these wildcards, tags in a pattern can contain traditional
globbing patterns, as described in Section “match filename or pathname” in
fnmatch(3) man page.

$ cfpeek sample.conf ’.program=[ab].pidfile’
.program="b".pidfile: /var/run/b.pid

Pattern lookups can be disabled using the --literal (-L) command line
option. There may be two reasons for doing so. First, literal lookups are
somewhat faster, so if you don’t need pattern matching using --literal can
save you a couple of CPU cycles. Secondly, if any of your identifiers contain
‘*’ or ‘%’ characters, you will have to use --literal to prevent them from
being treated as wildcards.

3.7 Using Various Parsers
Cfpeek can handle input files in various formats. The default one is ‘Grecs’
format, introduced in previous sections. To process input files of another
format, specify the parser to use via the --parser (-p) command line option.
The argument to this option is one of: ‘grecs’, ‘bind’, ‘path’, ‘meta1’ or
‘git’. See Chapter 4 [Formats], page 17, for a detailed description of each
of these formats.

For example, to select zone statements from the /etc/named.conf file:
$ cfpeek --parser=bind /etc/named.conf ’.*.zone’

3.8 Specifying Nodes to Output
Sometimes you may need to see not the node which matched the search key,
but its parent or other ancestor node. Consider, for example, the following
task: select from the /etc/named.conf file the names of all zones for which
this nameserver is a master. To do so, you will need to find all ‘zone.type’
statements with the value ‘master’, ascend to the parent node and print its
value.

Cfpeek provides several special formatting flags to that effect: up, down,
parent, child and sibling. They are called relative movement flags, be-

Chapter 3: Tutorial 11

cause they select another node in the tree, relative to the position of the
current node.

The up flag takes an integer number as its argument. It instructs cfpeek
to ascend that many parent nodes before actually printing the node. For
example, --format=up=1 means “ascend to the parent of the matched node
and print it”. This is exactly what we need to solve the above task, since
the ‘type’ statement is a child of a ‘zone’ statement. Thus, the solution is:

cfpeek --format=up=1,nodescend,value --parser=bind \
/etc/named.conf .*.type=master

The value flag indicates that we want on output only values, without the
corresponding pathnames. The nodescend flag tells cfpeek to not descend
into compound statements when outputting them. It is necessary since we
want only values of all relevant ‘zone’ statements, no their subordinate state-
ments.

A counterpart of this flag is down=n flag, which descends n levels of hier-
archy.

The parent flag acts in the similar manner, but it identifies the ancestor
by its keyword, instead of the relative nesting level. The statement

--format=parent=zone
tells cfpeek, after finding a matching node, to ascend until a node with the
identifier ‘zone’ is found, and then print this node.

The child=id statement does the opposite of parent: it locates a child
of the current node which has the identifier id.

Similarly, the sibling keyword instructs cfpeek to find first sibling of
the current node wich has the given identifier. For example, to find names
of the zone files for all master nodes in the named.conf file:

cfpeek --parser bind --format=sibling=file,value /etc/named.conf \
’.*.zone.type=master’

A ‘file’ statement is located on the same nesting level as ‘type’, for
example:

zone "example.net" {
type master;
file "db.example.net";

};
Thus, the above command first locates the ‘type’ statement, then searches
on the same nesting level for a ‘file’ statement, and finally prints its value.

3.9 Using Scripts
Cfpeek offers a scripting facility, which can be used to easily extend its
functionality beyond the basic operations, described in previous chapters.
Scripts must be written in Scheme, using ‘Guile’, the GNU’s Ubiquitous
Intelligent Language for Extensions. For information about the language,
refer to Revised(5) Report on the Algorithmic Language Scheme. For a

12 Cfpeek User Manual

detailed description of Guile and its features, see Section “Overview” in The
Guile Reference Manual.

This section assumes that the reader has sufficient knowledge about this
programming language.

The scripting facility is enabled by the use of the --expression (-e) of
--file (-f command line options. The --expression (-e) option takes as
its argument a Scheme expression, which will be executed for each state-
ment matching the supplied keys (or for each statement in the tree, if no
keys were supplied). The expression can obtain information about the state-
ment from the global variable node, which represents a node in the parse tree
describing this statement. The node contains complete information about
the statement, including its location in the source file, its type and neighbor
nodes, etc. A number of functions is provided to retrieve that information
from the node. These functions are discussed in detail in Chapter 7 [Script-
ing], page 33.

Let’s start from the simplest example. The following command prints all
nodes in the file:

$ cfpeek --expression=’(display node)(newline)’ sample.conf
#<node .user: "smith">
#<node .group: "mail">
#<node .pidfile: "/var/run/example">
#<node .logging.facility: "daemon">
#<node .logging.tag: "example">
#<node .program="a".command: "a.out">
#<node .program="a".logging.facility: "local0">
#<node .program="a".logging.tag: "a">
#<node .program="b".command: "b.out">
#<node .program="b".wait: "yes">
#<node .program="b".pidfile: "/var/run/b.pid">

The format shown in this example is the default Scheme representation
for nodes. You can use accessor functions to format the output to your
liking. For instance, the function ‘grecs-node-locus’ returns the location
of the node in the input file. The returned value is a cons, with the file name
as its car and the line number as its cdr. Thus, you can print statement
locations with the following command:

cfpeek --expr=’(let ((loc grecs-node-locus))
(format #t "~A:~A~%"
(car loc) (cdr loc)))’ \

sample.conf

Complex expressions are cumbersome to type in the command line, there-
fore the --file (-f) option is provided. This option takes the name of the
script file as its argument. This file must define the function named cfpeek
which takes a node as its argument. The script file is then loaded and the
cfpeek function is called for each matching node.

Chapter 3: Tutorial 13

Now, if we put the expression used in the previous example in a script
file (e.g. locus.scm):

(define (cfpeek node)
(let ((loc grecs-node-locus))
(format #t "~A:~A~%" (car loc) (cdr loc))))

then the example can be rewritten as:
$ cfpeek -f locus.scm sample.conf

When both --file and --expression options are used in the same in-
vocation, the cfpeek function is not invoked by default. In fact, it even does
not need to be defined. When used this way, cfpeek first loads the requested
script file, and then applies the expression to each matching node, the same
way it always does when --expression is supplied. It is the responsibility
of the expression itself to call any function or functions defined in the file.
This way of invoking ‘cfpeek’ is useful for supplying additional parameters
to the script. For example:

$ cfpeek -f script.scm -e ’(process-node node #t)’ input.conf

It is supposed that the function process-node is defined somewhere in
script.scm and takes two arguments: a node and a boolean.

The --init=expr (-i expr) option provides an initialization expression
expr. This expression is evaluated once, after loading the script file, if one
is specified, and before starting the main loop.

Similarly, the option --done=expr (-d expr) introduces a Scheme ex-
pression to be evaluated at the end of the run, after all nodes have been
processed.

3.9.1 Example: Converter to GIT Configuration
Format

Here is a more practical example of Scheme scripting. This script converts
entire parse tree into a GIT configuration file format. The format itself is
described in Section 4.6 [git], page 23.

The script traverses entire tree itself, so it must be called only once, for
the root node of the parse tree. The root node is denoted by a single dot,
so the invocation syntax is:

cfpeek -f togit.scm sample.conf .

Traversal is performed by the main function, cfpeek, using the grecs-
node-next and grecs-node-down functions. The grecs-node-next func-
tion returns a node which follows its argument at the same nesting level.
For example, if n is the very first node in our sample parse tree, then:

n ⇒ #<node .user: "smith">
(grecs-node-next n) ⇒ #<node .group: "mail">

Similarly, the grecs-node-down function returns the first subordinate
node of its argument. For example:

n ⇒ #<node .logging>

14 Cfpeek User Manual

(grecs-node-down n) ⇒ #<node .logging.facility: "daemon">

Both functions return ‘#f’ if there are no next or subordinate node, cor-
respondingly.

The grecs-node-type function is used to determine how to handle that
particular node. It returns a type of the node given to it as argument. The
type is an integer constant, with the following possible values:

Type The node is
grecs-node-root the root (topmost) node
grecs-node-stmt a simple statement
grecs-node-block a compound (block) statement

The print-section function prints a GIT section header corresponding
to its node. It ascends the parent node chain to find the topmost node and
prints the traversed nodes in the correct order.

To summarize, here is the listing of the togit.scm script:
(define (print-section node delim)
"Print a Git section header for the given node.

End it with delim.

The function recursively calls itself until the topmost
node is reached.
"
(cond
((grecs-node-up? node)
;; Ascend to the parent node
(print-section (grecs-node-up node) #\space)
;; Print its identifier, ...
(display (grecs-node-ident node))
(if (grecs-node-has-value? node)

;; ... value,
(begin
(display " ")
(display (grecs-node-value node))))

;; ... and delimiter
(display delim))
(else ;; mark the root node
(display "[")))) ;; with a [

(define (cfpeek node)
"Main entry point. Calls itself recursively to descend

into subordinate nodes and to iterate over nodes on the
same nesting level (tail recursion)."
(let loop ((node node))
(if node

Chapter 3: Tutorial 15

(let ((type (grecs-node-type node)))
(cond
((= type grecs-node-root)
(let ((dn (grecs-node-down node)))
;; Each statement in a Git config file must
;; belong to a section. If the first node
;; is not a block statement, provide the
;; default [core] section:
(if (not (= (grecs-node-type dn)

grecs-node-block))
(display "[core]\n"))

;; Continue from the first node
(loop dn)))

((= type grecs-node-block)
;; print the section header
(print-section node #\])
(newline)
;; descend into subnodes
(loop (grecs-node-down node))
;; continue from the next node
(loop (grecs-node-next node)))
((= type grecs-node-stmt)
;; print the simple statement
(display #\tab)
(display (grecs-node-ident node))
(display " = ")
(display (grecs-node-value node))
(newline)
;; continue from the next node
(loop (grecs-node-next node))))))))

If run on our sample configuration file, it produces:

$ cfpeek -f togit.scm sample.conf .
[core]

user = smith
group = mail
pidfile = /var/run/example

[logging]
facility = daemon
tag = example

[program a]
command = a.out

[program a logging]
facility = local0
tag = a

[program b]

16 Cfpeek User Manual

command = b.out
wait = yes
pidfile = /var/run/b.pid

Chapter 4: Supported Configuration File Formats 17

4 Supported Configuration File Formats

Cfpeek is able to handle input files in several formats. The supported for-
mats differ mostly in syntax. This chapter describes them in detail. If you
know of any free software which uses a structured configuration file not un-
derstood by cfpeek, please let us know (see Chapter 8 [Reporting Bugs],
page 37).

4.1 Grecs Configuration File
This is the default input format. It is used, e.g., by GNU Dico1, GNU
Mailutils2, GNU Radius3, Mailfromd4 and others.

The configuration file consists of statements and comments.
There are three classes of lexical tokens: keywords, values, and separators.

Blanks, tabs, newlines and comments, collectively called white space are
ignored except as they serve to separate tokens. Some white space is required
to separate otherwise adjacent keywords and values.

4.1.1 Comments

Comments may appear anywhere where white space may appear in the con-
figuration file. There are two kinds of comments: single-line and multi-line
comments. Single-line comments start with ‘#’ or ‘//’ and continue to the
end of the line:

This is a comment

// This too is a comment

Multi-line or C-style comments start with the two characters ‘/*’ (slash,
star) and continue until the first occurrence of ‘*/’ (star, slash).

Multi-line comments cannot be nested. However, single-line comments
may well appear within multi-line ones.

4.1.2 Pragmatic Comments

Pragmatic comments are similar to usual single-line comments, except that
they cause some changes in the way the configuration is parsed. Pragmatic
comments begin with a ‘#’ sign and end with the next physical newline
character.

#include <file>
#include file

Include the contents of the file file. There are three possible use
cases.

1 See GNU Dico Manual.
2 See GNU Mailutils Manual.
3 See GNU Radius Manual.
4 See Mailfromd Manual.

18 Cfpeek User Manual

If file is an absolute file name, the named file is included. An
error message will be issued if it does not exist.
If file contains wildcard characters (‘*’, ‘[’, ‘]’ or ‘?’), it is in-
terpreted as shell globbing pattern and all files matching that
pattern are included, in lexicographical order. If no files match
the pattern, the statement is silently ignored.
Otherwise, the form with angle brackets searches for file in the
include search path, while the second one looks for it in the
current working directory first, and, if not found there, in the
include search path. If the file is not found, an error message
will be issued.
The default include search path is:
1. prefix/share/program-name/1.2/include

2. prefix/share/program-name/include

where prefix is the installation prefix.

#include_once <file>
#include_once file

Same as #include, except that, if the file has already been in-
cluded, it will not be included again.

#line num
#line num "file"

This line causes the parser to believe, for purposes of error di-
agnostics, that the line number of the next source line is given
by num and the current input file is named by file. If the latter
is absent, the remembered file name does not change.

num "file"
This is a special form of #line statement, understood for com-
patibility with the c preprocessor.

In fact, these statements provide a rudimentary preprocessing features.
For more sophisticated ways to modify configuration before parsing, see
Section 4.1.4 [Preprocessor], page 20.

4.1.3 Statements

A simple statement consists of a keyword and value separated by any amount
of whitespace. Simple statement is terminated with a semicolon (‘;’).

The following is a simple statement:
standalone yes;

pidfile /var/run/slb.pid;

A keyword begins with a letter and may contain letters, decimal digits,
underscores (‘_’) and dashes (‘-’). Examples of keywords are: ‘expression’,
‘output-file’.

A value can be one of the following:

Chapter 4: Supported Configuration File Formats 19

number A number is a sequence of decimal digits.

boolean A boolean value is one of the following: ‘yes’, ‘true’, ‘t’ or ‘1’,
meaning true, and ‘no’, ‘false’, ‘nil’, ‘0’ meaning false.

unquoted string
An unquoted string may contain letters, digits, and any of the
following characters: ‘_’, ‘-’, ‘.’, ‘/’, ‘@’, ‘*’, ‘:’.

quoted string
A quoted string is any sequence of characters enclosed in double-
quotes (‘"’). A backslash appearing within a quoted string in-
troduces an escape sequence, which is replaced with a single
character according to the following rules:

Sequence Replaced with
\a Audible bell character (ASCII 7)
\b Backspace character (ASCII 8)
\f Form-feed character (ASCII 12)
\n Newline character (ASCII 10)
\r Carriage return character (ASCII

13)
\t Horizontal tabulation character

(ASCII 9)
\v Vertical tabulation character

(ASCII 11)
\\ A single backslash (‘\’)
\" A double-quote.
Table 4.1: Backslash escapes

In addition, the sequence ‘\newline’ is removed from the string.
This allows to split long strings over several physical lines, e.g.:

"a long string may be\

split over several lines"

If the character following a backslash is not one of those specified
above, the backslash is ignored and a warning is issued.

Here-document
A here-document is a special construct that allows to introduce
strings of text containing embedded newlines.
The <<word construct instructs the parser to read all the fol-
lowing lines up to the line containing only word, with possible
trailing blanks. Any lines thus read are concatenated together
into a single string. For example:

<<EOT

A multiline

string

EOT

20 Cfpeek User Manual

The body of a here-document is interpreted the same way as
a double-quoted string, unless word is preceded by a backslash
(e.g. ‘<<\EOT’) or enclosed in double-quotes, in which case the
text is read as is, without interpretation of escape sequences.
If word is prefixed with - (a dash), then all leading tab characters
are stripped from input lines and the line containing word. Fur-
thermore, if - is followed by a single space, all leading whitespace
is stripped from them. This allows to indent here-documents in
a natural fashion. For example:

<<- TEXT

The leading whitespace will be

ignored when reading these lines.

TEXT

It is important that the terminating delimiter be the only token
on its line. The only exception to this rule is allowed if a here-
document appears as the last element of a statement. In this case
a semicolon can be placed on the same line with its terminating
delimiter, as in:

help-text <<-EOT

A sample help text.

EOT;

list A list is a comma-separated list of values. Lists are enclosed in
parentheses. The following example shows a statement whose
value is a list of strings:

alias (test,null);

In any case where a list is appropriate, a single value is allowed
without being a member of a list: it is equivalent to a list with
a single member. This means that, e.g.

alias test;

is equivalent to
alias (test);

A block statement introduces a logical group of statements. It consists
of a keyword, followed by an optional value, and a sequence of statements
enclosed in curly braces, as shown in the example below:

server srv1 {

host 10.0.0.1;

community "foo";

}

The closing curly brace may be followed by a semicolon, although this is
not required.

4.1.4 Preprocessor

Before actual parsing, the configuration file is preprocessed. The built-in pre-
processor handles only file inclusion and #line statements (see Section 4.1.2

Chapter 4: Supported Configuration File Formats 21

[Pragmatic Comments], page 17), while the rest of traditional preprocess-
ing facilities, such as macro expansion, is supported via m4, which serves as
external preprocessor.

The detailed description of m4 facilities lies far beyond the scope of this
document. You will find a complete user manual in Section “GNU M4” in
GNU M4 macro processor. For the rest of this subsection we assume the
reader is sufficiently acquainted with m4 macro processor.

The external preprocessor is invoked with -s flag, which instructs it to
include line synchronization information in its output. This information is
then used by the parser to display meaningful diagnostic.

An initial set of macro definitions is supplied by the pp-setup file, located
in prefix/share/program-name/1.2/include directory.

The default pp-setup file renames all m4 built-in macro names so they all
start with the prefix ‘m4_’. This is similar to GNU m4 --prefix-builtin
option, but has an advantage that it works with non-GNU m4 implementa-
tions as well.

4.2 Path Configuration File
A pathname configuration file format corresponds exactly to the default out-
put format of cfpeek, i.e. it lists each terminal keyword as its full pathname,
followed by a semicolon, a single space and its value, as in the example below:

.user: "smith"

.group: "mail"

.pidfile: "/var/run/example"

.logging.facility: "daemon"

.logging.tag: "example"

.program="a".command: "a.out"

.program="a".logging.facility: "local0"

.program="a".logging.tag: "a"

.program="b".command: "b.out"

.program="b".wait: "yes"

.program="b".pidfile: "/var/run/b.pid"

This format is similar to the one used in X-resources.

4.3 BIND Configuration File
This is the format used by the isc bind configuration files. In general,
it is pretty similar to the ‘Grecs’, except that it does not support neither
here-documents, not list values. Some of its features, such as ‘acls’ and
‘allow-*’ lists do resemble lists, but are not them in reality. Such “suspi-
cious” statements are represented as simple statements. For example, the
following statement in named.conf:

allow-transfer {
allow-dns;

22 Cfpeek User Manual

!10.10.10.1;
10.10.10.0/8;

};

.allow-transfer.allow-dns:

.allow-transfer.!: "10.10.10.1"

.allow-transfer."10.10.10.0/8":

Another exception is the ‘controls’ statement, which doesn’t fall well
into the general syntax of bind configuration file. Therefore a special rule is
applied to handle it. In the effect, the following statement:

controls {
inet 127.0.0.1 port 953

allow { 127.0.0.1; 127.0.0.2; } keys { "rndc-key"; };
};

produces
.controls: (inet, 127.0.0.1, port, 953, allow, \

(127.0.0.1, 127.0.0.2), keys, (rndc-key))

4.4 DHCPD Configuration File
This is the format used by the isc dhcpd configuration files
(/etc/dhcpd.conf and any files it might include). It is very similar to
‘Bind’, with some minor differences:
• Block statements do not end with a semicolon.
• Tags or values can contain lists of quoted strings delimited by commas.

4.5 MeTA1 Configuration File
This type of configuration file is used by MeTA1, an advanced MTA pro-
gram. See http://www.meta1.org for details about the program and its
configuration.

The syntax is similar to both ‘Grecs’ and ‘Bind’ in that it uses curly
braces to delimit subordinate statements. The syntax for strings is similar
to ‘Grecs’ (see Section 4.1.3 [quoted string], page 18). As in ‘Grecs’, adjacent
quoted strings are concatenated to produce a single string.

The principal syntactic differences are:
• Only ‘#’ comments are understood.
• An equal sign is required between identifier and value in simple state-

ments, e.g.:
log_level = 12;

• List values are enclosed in curly braces.
• Here-document is not supported.

http://www.meta1.org

Chapter 4: Supported Configuration File Formats 23

4.6 GIT Configuration File
This is the format used by Git (http://git-scm.com). It is described in
detail in See Section “CONFIGURATION FILE” in git-config(1) man page.

The syntax is line-oriented. Comments are introduced by ‘#’ or ‘;’ char-
acter and extend up to the next physical newline. Statements are delimited
by newlines.

The syntax for simple statement is:
ident = value

Compound statements or sections begin with a section header, i.e. a
full pathname of that section using single space as a separator and enclosed
in a pair of square brackets. Any identifier in the path which contains
whitespace characters must be quoted using double quotes. Double quotes
and backslashes appearing in a section name must be escaped as ‘\"’ and
‘\\’ correspondingly. For example:

[section "subsection name" subsubsection]
An alternative syntax for section headers is a full pathname of the section

using single dot as a separator and enclosed in a pair of square brackets.
When this syntax is used, whitespace is not allowed in section names:

[section.subsection.subsubsection]
A section begins with the section headers and continues until the start of

next section or end of file, whichever occurs first.
Simple statements must occur only within a section. In other words, each

non-empty configuration file must contain at least one section.
String values may be entirely or partially enclosed in double quotes, sim-

ilarly to shell syntax. The following escape sequences are recognized within
a value:

Sequence Stands for
‘\"’ ‘"’
‘\\’ ‘\’
‘\b’ Backspace (ASCII 8)
‘\t’ Horizontal tab (ASCII 9)
‘\n’ Newline (ASCII 10)

A backslash immediately preceding a newline indicates line continuation.
Both characters are removed and the remaining characters are joined with
line that follows.

http://git-scm.com

Chapter 5: Cfpeek Command Line Syntax 25

5 Cfpeek Command Line Syntax

The format of cfpeek invocation is:
cfpeek options file [keys]

where options are command line options, file is the configuration file to
operate upon, and optional keys are pathnames of the keywords to locate in
that configuration file.

If keys are supplied, cfpeek, for each key, looks up in the parse tree for
any nodes matching the key and prints them on the standard output. An
error message is displayed for any key which has no matching statements in
the input file. In this case, program continues iterating over the rest of keys.
When the list is exhausted, cfpeek will exit with the status 1 (see Chapter 6
[Exit Codes], page 31).

If either -f (--file) or -e (--expression) has been given, a Scheme
expression or the default cfpeek function is evaluated for each matching
node. If -e (--expression) is given, the node is passed to it in the global
‘node’ variable. Otherwise, if -f (--file) is given, the node is passed as
argument to cfpeek function.

If both --file=script and --expression=expression options are
given, the script file script is loaded first, and the expression is evaluated
for each matching node. The expression can then refer to any variables and
call any functions defined in the script.

If no keys are supplied, the program operates as if given a single ‘.*’ key
(see Section 5.1 [Patterns], page 25), which matches any node in the parse
tree (i.e., it iterates over the entire parse tree).

5.1 Patterns
By default cfpeek treats keys as wildcard patterns. When matching state-
ment identifiers (keywords), two characters have special meaning: ‘%’ and
‘*’.

A ‘%’ character in place of an identifier matches any single keyword. Thus,
e.g.:

cfpeek file.conf .%.bar.baz

will match ‘.foo.bar.baz’, ‘.qux.bar.baz’, but will not match ‘.bar.baz’
or ‘.x.y.bar.baz’.

A single ‘*’ character in place of a keyword matches zero or more keywords
appearing in its place, so that:

cfpeek file.conf .*.bar.baz

The tags in block statement are matched using the traditional globbing
patterns. See Section “match filename or pathname” in fnmatch(3) man
page.

For example, this:

26 Cfpeek User Manual

cfpeek file.conf .*.program="mh-*"

will match any ‘program’ block statement whose tag begins with ‘mh-’.

5.2 Output Control

-H flags
--format=flags

Set output format flags. The argument is a comma-separated
list of format flags and relative movement options. Relative
movement options select another node, relative to the one found.
They are:

‘parent=id’
Find a parent of the matching node, which has id
as its identifier.

‘child=id’
Find a child of the matching node, which has id as
its identifier.

‘child=id’
Find a sibling of the matching node, which has id
as its identifier.

‘up=n’ Ascend n parent nodes and print the node at which
the ascent stopped.

descend=n
Descend n child nodes.
Any number of relative movement options can be
specified. They are executed in the order of their ap-
pearance in the --format statement. For example,
--format=up=2,sibling=foo,child=bar means: ascend two
levels of hierarchy, find a node named ‘foo’, look for a node
named ‘bar’ among the children of that node and print the
result.
If evaluation of the relative movement options results in an
empty node (e.g. the ‘up’ option attempts to go past the root
of the tree), nothing is output.
The delim flag controls how keyword paths is printed:

‘delim=char’
Sets path component delimiter, instead of the de-
fault ‘.’.

The following flags control the amount of information printed
for each node. These are boolean flags: when prefixed with ‘no’
they have the meaning opposite to the described.

Chapter 5: Cfpeek Command Line Syntax 27

‘locus’ Print source location of each configuration state-
ment. A location is printed as the file name, followed
by a semicolon, followed by the line number and an-
other semicolon. Locations are separated from the
rest of output by a single space character.

‘path’ Print statement paths.

‘value’ Print statement values.

‘quote’ Always quote string values.

‘never-quote’
Never quote string values.

‘quote-hex’
Print non-printable characters as C hex escapes.
This option is ignored if ‘noquote’ is set.

‘descend’ Descend into subnodes. Set default options.

The default format options are: ‘path,value,quote,descend’.

-q
--quiet Suppress error diagnostics. See Section 3.5 [quiet], page 8.

5.3 Modifiers
The following options modify the way cfpeek processes the parse tree and
search keys.

-L
--literal

Use literal matching, instead of pattern matching. See [literal],
page 10.

-S
--sort Before further processing, sort parse tree lexicographically in

ascending order.

-m
--matches=number

Output at most number matches for each key.

-p
--parser=type

Set parser type for the input file. The argument is one
of: ‘grecs’, ‘path’, ‘meta1’, ‘bind’, ‘dhcpd’, and ‘git’ (case-
insensitive). See Chapter 4 [Formats], page 17, for a description
of each type.

-r
--reduce Reduce the parse tree, so that each keyword occurs no more

than once at each tree level.

28 Cfpeek User Manual

-s path=val
--set=path=val

Set a keyword path to value. The produced parse tree node will
be processed as usual.

5.4 Scripting Options
The following options control the scripting facility of cfpeek.

-e expression
--expression=expression

Apply this expression to each node found. The global variable
node is set to the node being processed before evaluating. When
used together with --file=script, the expression can refer to
any variables and call any functions defined in the script file.

-f file
--file=file

Load the script file. Unless --expression is also given, the
script must define the function named ‘cfpeek’ which takes a
node as its only argument. This function will be called for each
matching node.
If --expression is given, this behavior is suppressed. It is then
the responsibility of the expression to call any functions defined
in this file.

-i expr
--init=expr

The --init=expr (-i expr) option provides an initialization ex-
pression expr. This expression is evaluated once, after loading
the script file, if one is specified, and before starting the main
loop.

-l script-language
--lang=script-language

Select scripting language to use. This option is reserved for
further use. As of version 1.2, the only possible value for script-
language is ‘scheme’.

5.5 Preprocessor Control Options
The options described below control the preprocessor facility. They are
meaningful only for ‘GRECS’ and ‘BIND’ configuration files. Preprocessor is
not used for another configuration file formats.

-Dname[=value]
--define=name[=value]

Define the preprocessor symbol name as having value, or empty.
See Section 4.1.4 [Preprocessor], page 20.

Chapter 5: Cfpeek Command Line Syntax 29

-I dir
--include-directory=dir

Add dir to include search path.
See Section 4.1.2 [Pragmatic Comments], page 17.

-N
--no-preprocessor

Disable preprocessor. see Section 4.1.4 [Preprocessor], page 20.

-P command
--preprocessor=command

Use command instead of the default preprocessor. see
Section 4.1.4 [Preprocessor], page 20.

5.6 Debugging Options
The options below enable trace output which helps understand how config-
uration parser works. They are mainly useful for cfpeek developers.

-X
--debug-lexer

Trace configuration file lexer.

-x
--debug-parser

Trace configuration file parser.

5.7 Informational Options

--help
-h Print a concise usage summary and exit.

--usage Print a summary of command line syntax and exit.

--version
-v Print the program version and exit.

Chapter 6: Exit Codes 31

6 Exit Codes

When cfpeek terminates, it reports the result of its invocation via its exit
code. Exit code of 0 indicates normal termination. Exit code 1 indicates that
not all search keys has been found. Exit codes greater than 1 indicate various
error conditions. The exact cause of failure is reported on the standard error.

The exit codes are as follows:

2 Error parsing the input file.

3 Script failure.

64 The command was used incorrectly, e.g., with the wrong number
of arguments, a bad option, a bad syntax in a parameter, or
whatever.

69 The requested script file does not exist, contains syntax errors,
or cannot be parsed for whatever other reason.

70 An internal software error has occurred. Please, report it, along
with any error diagnostics produced by the program, if you ever
stumble upon this error code. See Chapter 8 [Reporting Bugs],
page 37, for detailed instructions.

78 The script file parses correctly, but does not define all the sym-
bols required by cfpeek.

Chapter 7: Scripting 33

7 Scripting

This chapter describes the Scheme functions available for use in cfpeek
scripts. For an introduction to cfpeek scripting facility, see Section 3.9
[Scripts], page 11.

[Scheme Procedure]grecs-node? obj
Returns ‘#t’ if obj is a valid tree node.

[Scheme Procedure]grecs-node-root node
Returns the topmost node that can be traced up from node.

[Scheme Procedure]grecs-node-head node
Returns the first node having the same parent and located on the same
nesting level as node. I.e. the following always holds true:

(let ((head (grecs-node-head node)))
(and
(eq? (grecs-node-up node) (grecs-node-up head))
(not (grecs-node-prev? head))))

[Scheme Procedure]grecs-node-tail node
Returns the last node having the same parent and located on the same
nesting level as node. In other words, the following relation is always ‘#t’:

(let ((tail (grecs-node-tail node)))
(and
(eq? (grecs-node-up node) (grecs-node-up tail))

(not (grecs-node-next? tail))))

[Scheme Procedure]grecs-node-up? node
Return true if node has a parent node.

[Scheme Procedure]grecs-node-up node
Return parent node of node.

[Scheme Procedure]grecs-node-down? node
Returns ‘#t’ if node has child nodes.

[Scheme Procedure]grecs-node-down node
Returns the first child node of node.

[Scheme Procedure]grecs-node-next? node
Returns ‘#t’ if node is followed by another node on the same nesting level.

[Scheme Procedure]grecs-node-next node
Returns the node following node on the same nesting level.

[Scheme Procedure]grecs-node-prev? node
Returns ‘#t’ if node is preceded by another node on the same nesting
level.

34 Cfpeek User Manual

[Scheme Procedure]grecs-node-prev node
Returns the node preceding node on the same nesting level.

[Scheme Procedure]grecs-node-ident node
Returns identifier of the node node.

[Scheme Procedure]grecs-node-ident-locus node [full]
Returns locus of the node’s identifier. Returned value is a cons whose
parts depend on full, which is a boolean value. If full is ‘#f’, which is the
default, then returned value is a cons:

(file-name . line-number)

Oherwise, if full is ‘#t’, the function returns the locations where the node
begins and ends:

((beg-file-name beg-line beg-column) .
(end-file-name end-line end-column))

[Scheme Procedure]grecs-node-path-list node
Returns the full path to the node, converted to a list. Each list element
corresponds to a subnode identifier. A subnode which has a tag is repre-
sented by a cons, whose car contains the subnode identifier, and cdr its
value. For example, the following path:

.foo.bar=x.baz

is represented as
’("foo" ("bar" . "x") "baz")

[Scheme Procedure]grecs-node-path node [delim]
Returns the full path to the node (a string).

[Scheme Procedure]grecs-node-type node
Returns the type of the node. The following constants are defined:

grecs-node-root
The node is a root node. The following is always ‘#t’:

(and (= (grecs-node-type node) grecs-node-root)
(not (grecs-node-up? node))
(not (grecs-node-prev? node)))

grecs-node-stmt
The node is a simple statement. The following is always ‘#t’:

(and (= (grecs-node-type node) grecs-node-stmt)
(not (grecs-node-down? node)))

grecs-node-block
The node is a block statement.

[Scheme Procedure]grecs-node-has-value? node
Returns ‘#t’ if node has a value.

Chapter 7: Scripting 35

[Scheme Procedure]grecs-node-value node
Returns the value of node.

[Scheme Procedure]grecs-node-value-locus node [full]
Returns locus of the node’s value. Returned value is a cons whose parts
depend on full, which is a boolean value. If full is ‘#f’, which is the
default, then returned value is a cons:

(file-name . line-number)
Oherwise, if full is ‘#t’, the function returns the locations where the node
begins and ends:

((beg-file-name beg-line beg-column) .
(end-file-name end-line end-column))

[Scheme Procedure]grecs-node-locus node [full]
Returns source location of the node. Returned value is a cons whose
parts depend on full, which is a boolean value. If full is ‘#f’, which is the
default, then returned value is a cons:

(file-name . line-number)
Oherwise, if full is ‘#t’, the function returns the locations where the node
begins and ends:

((beg-file-name beg-line beg-column) .
(end-file-name end-line end-column))

[Scheme Procedure]grecs-find-node node path
Returns the first node whose path is path. Starts search from node.

[Scheme Procedure]grecs-match-first node pattern
Returns the first node whose path matches pattern. The search is started
from node.

[Scheme Procedure]grecs-match-next node
Node must be a node returned by a previous call to grecs-match-first
or ‘grecs-match-next’. The function returns next node matching the
initial pattern, or ‘#f’ if no more matches are found. For example, the
following code iterates over all nodes matching pattern:

(define (iterate-nodes root pattern thunk)
(do ((node (grecs-match-first root pattern)

(grecs-match-next node)))
((not node))
(thunk node)))

Chapter 8: How to Report a Bug 37

8 How to Report a Bug

Please, report bugs and suggestions to bug-cfpeek@gnu.org.ua.
You hit a bug if at least one of the conditions below is met:
• cfpeek terminates on signal 11 (SIGSEGV) or 6 (SIGABRT).
• cfpeek terminates with exit code 70 (internal software error).
• The program fails to do its job as described in this manual.

If you think you’ve found a bug, please be sure to include maximum
information available to reliably reproduce it, or at least to analyze it. The
information needed is:
• Version of the package you are using.
• Command line options and input file (or files) used.
• Conditions under which the bug appears.

Any errors, typos or omissions found in this manual also qualify as bugs.
Please report them, if you happen to find any.

mailto:bug-cfpeek@gnu.org.ua

Appendix A: GNU Free Documentation License 39

Appendix A GNU Free Documentation
License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within

40 Cfpeek User Manual

that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix A: GNU Free Documentation License 41

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque

42 Cfpeek User Manual

copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If

Appendix A: GNU Free Documentation License 43

there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

44 Cfpeek User Manual

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works
of the Document.
If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire

Appendix A: GNU Free Documentation License 45

aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

46 Cfpeek User Manual

A.1 ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

Concept Index 47

Concept Index

This is a general index of all issues discussed in this manual

#
#include . 17
#include_once . 18
#line . 18

%
%, a wildcard . 10, 25

*
*, a wildcard . 10, 25

-
--file and --expression used together

. 13, 25

A
absolute pathname . 6

B
bind configuration format 21
block statement . 5, 20
boolean value . 19

C
cfpeek, Scheme function 28
child . 11, 26
child statement . 5
Comments in a configuration file 17
comments, pragmatic 17
compound statement 5
configuration file statements 18

D
d, -d short option, described 13
D, -D short option, summary 28
debug-lexer, --debug-lexer option,

summary . 29
debug-parser, --debug-parser option,

summary . 29

default . 27
define, --define option, summary . . . 28
delim . 26
delim, format flag . 8
descend . 8, 27
dhcpd configuration format 22
done, --done option, described 13
down . 11, 26

E
e, -e short option, introduced 12
e, -e short option, summary 28
escape sequence . 19
exit code . 31
expression, --expression option,

introduced . 12
expression, --expression option,

summary . 28

F
f, -f short option, introduced 12
f, -f short option, summary 28
FDL, GNU Free Documentation License

. 39
file, --file option, introduced 12
file, --file option, summary 28
format, --format option, in statement

look-ups . 9
format, --format option, introduced . . . 7
format, --format option, summary . . . 26
format, input . 17

G
git configuration format 23
GIT Configuration Converter 13
globbing pattern . 10
globbing patterns . 25
grecs configuration format 17
grecs-find-node . 35
grecs-match-first 35
grecs-match-next . 35
grecs-node-block . 34
grecs-node-down 13, 33

48 Cfpeek User Manual

grecs-node-down? . 33
grecs-node-has-value? 34
grecs-node-head . 33
grecs-node-ident . 34
grecs-node-ident-locus 34
grecs-node-locus . 35
grecs-node-next 13, 33
grecs-node-next? . 33
grecs-node-path . 34
grecs-node-path-list 34
grecs-node-prev . 34
grecs-node-prev? . 33
grecs-node-root 33, 34
grecs-node-stmt . 34
grecs-node-tail . 33
grecs-node-type 14, 34
grecs-node-up . 33
grecs-node-up? . 33
grecs-node-value . 35
grecs-node-value-locus 35
grecs-node? . 33
Guile . 11

H
h, -h short option, summary 29
H, -H short option, in statement look-ups

. 9
H, -H short option, introduced 7
H, -H short option, summary 26
help, --help option, summary 29
here-document . 19

I
i, -i short option, described 13
i, -i short option, summary 28
I, -I short option, summary 28
identifier . 5
include-directory,

--include-directory option,
summary . 28

init, --init option, described 13
init, --init option, summary 28
input formats . 10, 17
input parsers . 10

K
keyword . 5

L
l, -l short option, summary 28
L, -L short option, described 10
L, -L short option, summary 27
lang, --lang option, summary 28
list . 20
literal, --literal option, described

. 10
literal, --literal option, summary

. 27
locus . 27
look-up key . 8

M
m, -m short option, summary 27
m4 . 20
matches, --matches option, summary

. 27
MeTA1 configuration format 22
multi-line comments 17

N
N, -N short option, summary 29
never-quote . 27
no-preprocessor, --no-preprocessor

option, summary 29
node . 28
node, Guile variable 12
nodefault . 27
nodescend . 27
nolocus . 27
nonever-quote . 27
nopath . 27
noquote . 27
noquote-hex . 27
novalue . 27

P
p, -p short option, described 10
p, -p short option, summary 27
P, -P short option, summary 29
parent . 11, 26
parent statement . 5
parser, --parser option, described . . . 10
parser, --parser option, summary . . . 27
path . 27
path configuration format 21
path, format flag . 8
pathname . 5

Concept Index 49

pathname, absolute . 6
pathname, relative . 6
pathname-value listing 7
pattern . 10, 25
pp-setup . 21
pragmatic comments 17
preprocessor . 20
preprocessor control 28
preprocessor, --preprocessor option,

summary . 29

Q
q, -q short option, described 9
q, -q short option, summary 27
quiet, --quiet option, described 9
quiet, --quiet option, summary 27
quote . 27
quote-hex . 27
quoted string . 19

R
r, -r short option, summary 27
reduce, --reduce option, summary . . . 27
relative pathname . 6
root statement . 5

S
s, -s short option, summary 27
S, -S short option, summary 27
Scheme . 11
scripts . 11
search key . 8
section . 5
set, --set option, summary 27
sibling . 11, 26
simple statement . 5
simple statements 1, 18

single-line comments 17
sort, --sort option, summary 27
start-up scripts . 9
statement look-up . 8
statement, block . 20
statement, simple . 18
statement, subordinate 5
statements, configuration file 18
string, quoted . 19
string, unquoted . 19
structured configuration file 1
subordinate statement 5
substatement . 5

T
tag, in a compound statement 5

U
up . 11, 26
usage, --usage option, summary 29

V
V, -V short option, summary 29
value . 5, 8, 27
version, --version option, summary

. 29

W
wildcards . 25

X
x, -x short option, summary 29
X, -X short option, summary 29
X-resources . 21

	Introduction
	Overview of this Manual
	Tutorial
	Basic Notions
	Pathnames
	Example Configuration
	Listing the Entire File
	Statement Lookups
	Pattern Lookups
	Using Various Parsers
	Specifying Nodes to Output
	Using Scripts
	Example: Converter to GIT Configuration Format

	Supported Configuration File Formats
	Grecs Configuration File
	Comments
	Pragmatic Comments
	Statements
	Preprocessor

	Path Configuration File
	BIND Configuration File
	DHCPD Configuration File
	MeTA1 Configuration File
	GIT Configuration File

	Cfpeek Command Line Syntax
	Patterns
	Output Control
	Modifiers
	Scripting Options
	Preprocessor Control Options
	Debugging Options
	Informational Options

	Exit Codes
	Scripting
	How to Report a Bug
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index

