
Gamma
version 2.0, 20 March 2010

Sergey Poznyakoff.

Copyright c© 2010 Sergey Poznyakoff
Permission is granted to copy, distribute and/or modify this document un-
der the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no Invariant
Sections, with the Front-Cover texts being “Gamma Manual”, and with the
Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License”.
(a) The FSF’s Back-Cover Text is: “You have freedom to copy and modify
this Manual, like GNU software. Help the software be free.”

i

Short Contents

1 Overview . 1

2 Syslog Interface . 3

3 SQL Interface . 7

4 Expat Interface . 11

5 How to Report a Bug . 25

A GNU Free Documentation License . 27

Concept Index . 35

iii

Table of Contents

1 Overview . 1

2 Syslog Interface . 3

3 SQL Interface . 7

4 Expat Interface . 11
4.1 Expat Basics . 11
4.2 Creating XML Parsers . 12
4.3 Parser Functions . 14
4.4 Error Handling . 14
4.5 Expat Handlers . 17

4.5.1 start-element-handler . 17
4.5.2 end-element-handler . 17
4.5.3 character-data-handler . 17
4.5.4 processing-instruction-handler . 18
4.5.5 comment-handler . 18
4.5.6 start-cdata-section-handler . 18
4.5.7 end-cdata-section-handler . 18
4.5.8 default-handler . 18
4.5.9 default-handler-expand . 19
4.5.10 skipped-entity-handler . 19
4.5.11 start-namespace-decl-handler . 19
4.5.12 end-namespace-decl-handler . 20
4.5.13 xml-decl-handler . 20
4.5.14 start-doctype-decl-handler . 20
4.5.15 end-doctype-decl-handler . 21
4.5.16 attlist-decl-handler . 21
4.5.17 entity-decl-handler . 21
4.5.18 notation-decl-handler . 22
4.5.19 not-standalone-handler . 22

4.6 miscellaneous functions . 22

5 How to Report a Bug . 25

Appendix A GNU Free Documentation License
. 27

A.1 ADDENDUM: How to use this License for your documents 34

Concept Index . 35

Chapter 1: Overview 1

1 Overview

‘Gamma’ is a collection of assorted Guile modules. Version 2.0 provides
a ‘syslog’ interface, a module for interfacing with SQL (more precisely:
MySQL and PostgreSQL) databases and a module for writing XML parsers,

Chapter 2: Syslog Interface 3

2 Syslog Interface

The ‘(gamma syslog)’ module provides bindings for ‘syslog’ functions:
(use-modules ((gamma syslog)))

[Scheme procedure]openlog tag option facility
Opens a connection to the system logger for Guile program. Arguments
have the same meaning as in openlog(3):

tag Syslog tag : a string that will be prepended to every message.

option Flags that control the operation. A logical or (logior) of
one or more of the following:

LOG CONS
Write directly to system console if there is an
error while sending to system logger.

LOG NDELAY
Open the connection immediately (normally, the
opening is delayed until when the first message
is logged).

LOG NOWAIT
Don’t wait for child processes that may have been
created while logging the message.

LOG ODELAY
The converse of ‘LOG_NDELAY’; opening of the
connection is delayed until syslog is called. This
is the default.

LOG PERROR
Print to stderr as well. This constant may be
absent if the underlying implementation does not
support it.

LOG PID Include PID with each message.

facility Specifies what type of program is logging the message. The
facility must be one of:

Facility Meaning
LOG AUTH Security/authorization messages.
LOG AUTHPRIV Same as LOG_AUTH.
LOG CRON Clock daemon.
LOG DAEMON System daemons without separate facility value.
LOG FTP FTP daemon.
LOG LOCAL0
through
LOG LOCAL7

Reserved for local use.

4 Gamma

LOG LPR Line printer subsystem.
LOG MAIL Mail subsystem.
LOG NEWS USENET news subsystem.
LOG SYSLOG Messages generated internally by syslogd.
LOG USER Generic user-level messages. This is the default.
LOG UUCP UUCP subsystem.
Example:

(openlog "reader" (logior LOG_PID LOG_CONS) LOG_DAEMON)

[Scheme procedure]syslog-tag
Returns the tag, used in the recent call to openlog.

[Scheme procedure]syslog prio text
Distribute a message via syslogd. The text supplies the message text.
The prio specifies priority of the message. Its value must be one of the
following:

Priority Meaning
LOG EMERG system is unusable
LOG ALERT action must be taken immediately
LOG CRIT critical conditions
LOG ERR error conditions
LOG WARNING warning conditions
LOG NOTICE normal, but significant, condition
LOG INFO informational message
LOG DEBUG debug-level message
Example:

(syslog LOG_WARNING "This is a test message")

The priority argument may also be ‘OR’ed with a facility value, to override
the one set by the openlog function, e.g.:

(syslog (logior LOG_DAEMON LOG_WARNING) "This is a test message")

It is common to use the format function to prepare the value of the text
argument:

(syslog LOG_WARNING
(format #f "operation reported: ~A" result))

[Scheme procedure]open-syslog-port prio
Create a syslog port for the given priority. Syslog port is a special output
port such that any writes to it are transferred to the syslog with the given
priority. The port is line buffered. For example, the following code:

(set-current-output-port (open-syslog-port LOG_ERR))
(display "A test ")
(display "message")
(newline)

Chapter 2: Syslog Interface 5

results in sending the string ‘A test message’ to the syslog priority LOG_
ERR.

[Scheme procedure]openlog?
Return #t if openlog was previously called.

[Scheme procedure]closelog
Close the logging channel. The use of this function is optional.

Chapter 3: SQL Interface 7

3 SQL Interface

The ‘(gamma sql)’ module provides interface with MySQL and PostgreSQL
database management systems.

Usage:
(use-modules ((gamma sql)))

[Scheme procedure]sql-open-connection params
This function opens a connection to the SQL server and returns a con-
nection object. This object is then used as argument to sql-query and
sql-close-connection functions.
The params argument supplies the connection parameters. It is a list of
conses, each of which is composed from a keyword and a value.

[Keyword]#:iface
Defines the type of the SQL interface. Valid values are: ‘"mysql"’, to
connect to a MySQL server, and ‘"pgsql"’, to connect to a Postgres
server.

[Keyword]#:host
Defines server host name. The value is a string, containing the host
name or ASCII representation of the host IP address.

[Keyword]#:port
Defines the port number server is listening on. The value is a decimal
port number.

[Keyword]#:socket
If the SQL server is listening on a socket, this keyword defines the
UNIX pathname of the socket. This keyword cannot be used together
with ‘#:host’ or ‘#:port’ keyword pairs.

[Keyword]#:user
Sets the SQL user name.

[Keyword]#:pass
Sets the SQL user password.

[Keyword]#:db
Sets the database name.

[Keyword]#:ssl-cert
Defines full pathname of the SSL certificate to use. If this keyword is
present, the connection with the server will be encrypted using SSL.
Currently it is implemented only for MySQL connections.

[Keyword]#:config-file
Use the specified MySQL configuration file to obtain missing parame-
ters.

8 Gamma

[Keyword]#:config-group
Obtain missing parameters from the specified group in the MySQL
configuration file (see ‘#:config-file’, above).

[Scheme procedure]sql-close-connection conn
Close the SQL connection. The conn must be a connection descriptor
returned from a previous call to sql-open-connection.

[Scheme procedure]sql-query conn query
Conn is a connection descriptor returned from a previous call to sql-
open-connection, and query is a valid SQL query. This function executes
the query and returns its results.
If query is a SELECT query (or a similar query, returning tuples), the
return is a list, each element of which is a list representing a row. Elements
of each row (columns) are string values.
If query results in some modifications to the database (e.g. an UPDATE
statement), the sql-query function returns the number of affected data-
base rows.

[Error Keyword]sql-error
An error of this type is raised when any of the above functions fails. Two
arguments are supplied: a string describing the error, and error message
from the underlying SQL implementation.

[Scheme syntax]sql-catch-failure (handler) expr
[Scheme syntax]sql-catch-failure expr

This syntax executes the Scheme expression expr and calls handler if a
gsql-error exception occurs. In its second form, sql-catch-failure
calls a function named sql-error-handler if a sql-error exception
occurs. The sql-error-handler must be declared by the user.
The error handler must be declared as follows:

(define (handler key func fmt fmtargs data)
...)

where:

key The error key (‘sql-error’).

func Name of the Scheme function that encountered the error.

fmt Format string suitable for format.

fmtargs Arguments to fmt.

data Interface-specific error description. It is a list consisting of
two elements. The first element is an integer code of the
error, if supported by the underlying implementation, or #f
if not. The second element is a textual description of the
error obtained from the underlying implementation.

For example:

Chapter 3: SQL Interface 9

(define (sql-error-handler key func fmt fmtargs data)
(apply format (current-error-port) fmt fmtargs))

[Scheme syntax]sql-ignore-failure (value) expr
[Scheme syntax]sql-ignore-failure expr

Evaluates Scheme expression expr and returns the result of evaluation,
or value if a gsql-error exception occurs.
In its second form, returns #f in case of error.

Chapter 4: Expat Interface 11

4 Expat Interface

The ‘(gamma expat)’ module provides interface to libexpat, a library for
parsing XML documents. See http://expat.sourceforge.net, for a de-
scription of the library.

Usage:
(use-modules ((gamma expat)))

4.1 Expat Basics
Parsing of XML documents using Expat is based on user-defined callback
functions. You create a parser object, and associate callback (or handler)
functions with the events he is interested in. Such events may be, for in-
stance, encountering of a open or closing tag, encountering of a comment
block, etc. Once the parser object is ready, you start feeding the document
to it. As the parser recognizes XML constructs, it calls the callbacks that
are registered for them.

Parsers are created using xml-make-parser function. In the simplest
case, it takes no arguments, e.g.:

(let ((parser (xml-make-parser)))
...

The function xml-parse takes the parser as its argument, reads the doc-
ument from the current input stream and feeds it to the parser. Thus, the
simplest program for parsing XML documents is:

(use-modules ((gamma expat)))
(xml-parse (xml-make-parser))

This program is perhaps not so useful, but you may already use it to
check whether its input is a correctly formed XML document. If xml-parse
encounters an error, it signals the gamma-xml-error error. See Section 4.4
[errors], page 14, for a discussion on how to handle it.

The xml-make-parser function takes optional arguments, which allow to
set callback functions for the new parser. For example, the following code
sets function ‘elt-start’ as a handler for start elements:

(xml-make-parser #:start-element-handler elt-start)
The #:start-element-handler keyword informs the function that the

argument following it is a handler for start XML documents. Any number
of handlers may be set this way, e.g.:

(xml-make-parser #:start-element-handler elt-start
#:end-element-handler elt-end
#:comment-handler comment)

Definitions of particular handler functions differ depending on their pur-
pose, i.e. on the event they are defined to handle. For example, a start
element handler must be defined as having two arguments. First of them is
the name of the tag, and the second one is a list of attributes supplied for

http://expat.sourceforge.net

12 Gamma

that tag. Thus, for example, the following start handler prints the tag and
the number of attributes:

(define (elt-start name attrs)
(format #t "~A (~A)~%" name (length attrs)))

For a detailed description of all available handlers and handler keywords,
see Section 4.5 [handlers], page 17.

To further improve our example, suppose you need a program that will
take an XML document as its input and create a description of its structure
on output, showing element nesting levels by indenting their description.
Here is how to write it.

First, define handlers for start and end elements. Start element handler
will print two indenting spaces for each level of ancestor elements, followed
by the element name and its attributes and a newline. It will then increase
the global level variable:

(define level 0)

(define (elt-start name attrs)
(display (make-string (* 2 level) #\space))
(display name)
(for-each
(lambda (x)
(display " ")
(display (car x))
(display "=")
(display (cdr x)))
attrs)
(newline)
(set! level (1+ level)))

The handler for end tags is simpler: it must only decrease the level:

(define (elt-end name)
(set! level (1- level)))

Finally, create a parser and parse the input:

(xml-parse (xml-make-parser #:start-element-handler elt-start
#:end-element-handler elt-end))

4.2 Creating XML Parsers
Gamma provides several functions for creating and modifying XML parsers.
The xml-primitive-make-parser and xml-primitive-set-handler are
lower level interfaces, provided for those who wish to further extend Gamma
functionality. Higher level interfaces are xml-make-parser and xml-set-
handler which we recommend for regular users.

Chapter 4: Expat Interface 13

[Scheme procedure]xml-primitive-make-parser enc sep
Return a new XML parser. If enc is given, it must be one of: ‘US-ASCII’,
‘UTF-8’, ‘UTF-16’, ‘ISO-8859-1’. If sep is given, the returned parser has
namespace processing in effect. In that case, sep is a character which is
used as a separator between the namespace URI and the local part of the
name in returned namespace element and attribute names.

[Scheme procedure]xml-set-encoding parser enc
Set the encoding to be used by the parser. The latter must be a value
returned from a previous call to xml-primitive-make-parser or xml-
make-parser.
The sequence:

(let ((parser (xml-primitive-make-parser)))
(xml-set-encoding parser encoding)
...

is equivalent to:
(let ((parser (xml-primitive-make-parser encoding)))
...

and to:
(let ((parser (xml-make-parser encoding)))
...

[Scheme procedure]xml-primitive-set-handler parser key handler
Set XML handler for an event. Arguments are:

parser A valid XML parser

key A key, identifying the event. For example,
‘#:start-element-handler’ sets handler which is
called for start tags.
See Section 4.5 [handlers], page 17, for its values and their
meaning.

handler Handler procedure.

[Scheme function]xml-set-handler parser args. . .
Sets several handlers at once. Optional arguments (args) are constructed
of keywords (as described in see [handler-keyword], page 13), followed by
their arguments, for example:

(xml-set-handler parser
#:start-element-handler elt-start
#:end-element-handler elt-end)

[Scheme function]xml-make-parser [enc [sep]] args. . .
Create a parser and set its handlers. Optional enc and sep have the
same meaning as in [xml-primitive-make-parser], page 12. The rest of
arguments define handlers for the new parser. They must be supplied

14 Gamma

in pairs: a keyword (as described in see [handler-keyword], page 13),
followed by its argument. For example:

(xml-make-parser "US-ASCII"
#:start-element-handler elt-start
#:end-element-handler elt-end)

This call creates a new parser for documents in ‘US-ASCII’ encoding and
sets two handlers: for element start and for element end. This call is
equivalent to:

(let ((p (xml-primitive-make-parser "US-ASCII")))
(xml-primitive-set-handler p #:start-element-handler elt-start)
(xml-primitive-set-handler p #:end-element-handler elt-end)
...

4.3 Parser Functions

[Scheme procedure]xml-primitive-parse parser input isfinal
Parse next piece of input. Arguments are:

parser A parser returned from a previous call to xml-primitive-
make-parser or xml-make-parser.

input A piece of input text.

isfinal Boolean value indicating whether input is the last part of
input.

[Scheme function]xml-parse-more parser input
Equivalent to:

(xml-primitive-parse parser input #f)

unless input is an end-of-file object, in which case it is equivalent to:
(xml-primitive-parse parser "" #t)

[Scheme function]xml-parse parser [port]
Reads XML input from port (or the standard input port, if it is not given)
and parses it using xml-primitive-parse.

4.4 Error Handling
When encountering an error. the ‘gamma xml’ functions use Guile error re-
porting mechanism (see Section “Error Reporting” in The Guile Reference
Manual). The error key indicates what type of error it was, and the rest
of arguments supply additional information about the error. Recommended
ways for handling errors in Guile are described in Section “Handling Er-
rors” in The Guile Reference Manual). In this chapter we will describe how
to handle errors in XML input and other errors reported by the underlying
‘libexpat’ library.

Chapter 4: Expat Interface 15

[Error Key]gamma-xml-error
An error of this type is signalled when a of ‘gamma xml’ functions encoun-
ters an XML-related error.

The arguments supplied with this error are:

key The error key (gamma-xml-error).

func Name of the function that generated the error.

fmt Format string

fmt-args Arguments for ‘fmt’.

descr Error description. If there are no additional information, it is
#f. Otherwise it is a list of 5 elements which describes the error
and its location in the input stream:
0. Error code (number).
1. Line number (starts at 1).
2. Column number (starts at 0).
3. Context in which the error occurred, i.e. a part of the input

text which was found to contain the error.
4. Offset of point that caused the error within the context.

A special syntax is provided to extract parts of the ‘descr’ list:

[Gamma Syntax]xml-error-descr descr key
Extract from descr the part identified by key . Use this macro in the error
handlers. Valid values for key are:

[xml-error-descr key]#:error-code
Return the error code.

[xml-error-descr key]#:line
Return line number.

[xml-error-descr key]#:column
Return column number.

[xml-error-descr key]#:has-context?
Return #t if the description has context part. Use the two keywords
below only if

(xml-error-descr d #:has-context?
returned #t.

[xml-error-descr key]#:context
Return context string.

[xml-error-descr key]#:error-offset
Return the location within #:context where the error occurred.

16 Gamma

If no special handler is set, the default guile error handler displays the
error and its approximate location on the standard error port. For example,
given the following input file:

$ cat input.xml
<input>
<ref a=1/>
</input>

the ‘xmlck.scm’ (see [xmlck.scm], page 11) produces:
$ guile -s examples/xmlck.scm < input.xml
ERROR: In procedure xml-primitive-parse:
ERROR: not well-formed (invalid token) near line 2

To provide a more detailed diagnostics, catch the gamma-xml-error code
and use information from the ‘descr’ list. For example:

(catch ’gamma-xml-error
(lambda ()

(xml-parse (xml-make-parser)))
(lambda (key func fmt args descr)

(with-output-to-port
(current-error-port)

(lambda ()
(cond
((not descr)
(apply format #t fmt args)
(newline))
(else
(format #t
"~A:~A: ~A~%"
(xml-error-descr descr #:line)
(xml-error-descr descr #:column)
(xml-error-string (xml-error-descr descr #:error-code)))
(if (xml-error-descr descr #:has-context?)

(let ((ctx-text (xml-error-descr descr #:context))
(ctx-pos (xml-error-descr descr #:error-offset)))

(format #t
"Context (^ marks the point): ~A^~A~%"
(substring ctx-text 0 ctx-pos)
(substring ctx-text ctx-pos))))
(exit 1)))))))

When applied to the same input document as in the previous example,
this code produces:

$ guile -s examples/xml-check.scm < input.xml
2:8: not well-formed (invalid token)
Context (^ marks the point): <input>
<ref a=^1/>

Chapter 4: Expat Interface 17

4.5 Expat Handlers
This section describes all available element handlers. For clarity, each han-
dler is described in its own subsection. For each handler, we indicate a
keyword that is used when registering this handler and the handler proto-
type.

To register handlers, use xml-make-parser or xml-set-handler func-
tions. See Section 4.2 [creating parsers], page 12, for a detailed discussion of
these functions.

4.5.1 start-element-handler

[Handler Keyword]#:start-element-handler
Sets handler for start (and empty) tags.

The handler must be defined as follows:

[Handler prototype]start-element name attrs
Arguments:

name Element name.

attrs A list of element attributes. Each attribute is represented by
a cons (‘car’ holds attribute name, ‘cdr’ holds its value).

4.5.2 end-element-handler

[Handler Keyword]#:end-element-handler
Sets handler for end (and empty) tags. An empty tag generates a call to
both start and end handlers (in that order).

The handler must be defined as follows:

[Handler prototype]end-element name
Arguments:

name Element name

4.5.3 character-data-handler

[Handler Keyword]#:character-data-handler
Sets a text handler. A single block of contiguous text free of markup may
result in a sequence of calls to this handler. So, if you are searching for a
pattern in the text, it may be split across calls to this handler.

The handler itself is defined as:

[Handler prototype]character-data text
Arguments:

text The text.

18 Gamma

4.5.4 processing-instruction-handler

[Handler Keyword]#:processing-instruction-handler
Set a handler for processing instructions.

[Handler prototype]processing-instruction target data
Arguments are:

target First word in the processing instruction.

data The rest of the characters in the processing instruction, after
target and whitespace following it.

4.5.5 comment-handler

[Handler Keyword]#:comment-handler
Sets a handler for comments.

[Handler prototype]comment text

text The text inside the comment delimiters.

4.5.6 start-cdata-section-handler

[Handler Keyword]#:start-cdata-section-handler
Sets a handler that gets called at the beginning of a CDATA section.

The handler is defined as follows:

[Handler prototype]start-cdata-section

4.5.7 end-cdata-section-handler

[Handler Keyword]#:end-cdata-section-handler
Sets a handler that gets called at the end of a CDATA section.

The handler is defined as:

[Handler prototype]end-cdata-section

4.5.8 default-handler

[Handler Keyword]#:default-handler
Sets a handler for any characters in the document which wouldn’t oth-
erwise be handled. This includes both data for which no handlers can
be set (like some kinds of DTD declarations) and data which could be
reported but which currently has no handler set.

[Handler prototype]default text

Chapter 4: Expat Interface 19

text A string containing all non-handled characters, which are
passed exactly as they were present in the input XML docu-
ment except that they will be encoded in UTF-8 or UTF-16.
Line boundaries are not normalized. Note that a byte order
mark character is not passed to the default handler. There
are no guarantees about how characters are divided between
calls to the default handler: for example, a comment might
be split between multiple calls. Setting the ‘default’ handler
has the side effect of turning off expansion of references to in-
ternally defined general entities. Such references are passed
to the default handler verbatim.

4.5.9 default-handler-expand

[Handler Keyword]#:default-handler-expand
This sets a default handler as above, but does not inhibit the expansion
of internal entity references. Any entity references are not passed to the
handler.

The handler prototype is the same as in Section 4.5.8 [default-handler],
page 18.

4.5.10 skipped-entity-handler

[Handler Keyword]#:skipped-entity-handler
Set a skipped entity handler, i.e. a handler which is called if:
• An entity reference is encountered for which no declaration has been

read and this is not an error.
• An internal entity reference is read, but not expanded, because a

‘#:default-handler’ has been set.

[Handler prototype]skipped-entity entity-name parameter?
Arguments are:

entity-name
Name of the entity.

parameter?
This argument is #t if the entity is a parameter, and #f
otherwise.

4.5.11 start-namespace-decl-handler

[Handler Keyword]#:start-namespace-decl-handler
Set a handler to be called when a namespace is declared.

[Handler prototype]start-namespace-decl prefix uri
Arguments:

20 Gamma

prefix Namespace prefix.

uri Namespace URI.

4.5.12 end-namespace-decl-handler

[Handler Keyword]#:end-namespace-decl-handler
Set a handler to be called when leaving the scope of a namespace declara-
tion. This will be called, for each namespace declaration, after the handler
for the end tag of the element in which the namespace was declared.

The handler prototype is:

[Handler prototype]end-namespace-decl prefix

4.5.13 xml-decl-handler

[Handler Keyword]#:xml-decl-handler
Sets a handler that is called for XML declarations and also for text dec-
larations discovered in external entities.

[Handler prototype]xml-decl version encoding . detail
Arguments:

version Version specification (string), or #f, for text declarations.

encoding Encoding. May be #f.

detail ‘Unspecified’, if there was no standalone parameter in the
declaration. Otherwise, #t or #f depending on whether it
was given as ‘yes’ or ‘no’.

4.5.14 start-doctype-decl-handler

[Handler Keyword]#:start-doctype-decl-handler
Set a handler that is called at the start of a ‘DOCTYPE’ declaration, before
any external or internal subset is parsed.

[Handler prototype]start-doctype-decl name sysid pubid
has-internal-subset?

Arguments:

name Declaration name.

sysid System ID. May be #f.

pubid Public ID. May be #f.

has-internal-subset?
#t if the ‘DOCTYPE’ declaration has an internal subset, #f
otherwise.

Chapter 4: Expat Interface 21

4.5.15 end-doctype-decl-handler

[Handler Keyword]#:end-doctype-decl-handler
Set a handler that is called at the end of a ‘DOCTYPE’ declaration, after
parsing any external subset.

The handler takes no arguments:

[Handler prototype]end-doctype-decl

4.5.16 attlist-decl-handler

[Handler Keyword]#:attlist-decl-handler
Sets a handler for ‘attlist’ declarations in the DTD. This handler is
called for each attribute, which means, in particular, that a single attlist
declaration with multiple attributes causes multiple calls to this handler.

The handler prototype is:

[Handler prototype]attlist-decl el-name att-name att-type detail
Argument:

el-name Name of the element for which the attribute is being declared.

att-name Attribute name.

detail Default value, if el-name is a ‘#FIXED’ attribute, #t, if it is a
‘#REQUIRED’ attribute, and #f, if it is a ‘#IMPLIED’ attribute.

4.5.17 entity-decl-handler

[Handler Keyword]#:entity-decl-handler
Sets a handler that will be called for all entity declarations.

[Handler prototype]entity-decl name param? value base sys-id
pub-id notation

Arguments:

name Entity name.

param? For parameter entities, #t. Otherwise, #f.

value For internal entities, entity value. Otherwise, #f.

base Base.

sys-id System ID. For internal entities – #f.

pub-id Public ID. For internal entities – #f.

notation Notation name, for unparsed entity declarations. Otherwise,
#f. Unparsed are entity declarations that have a notation
(‘NDATA’) field, such as:

<!ENTITY logo SYSTEM "images/logo.gif" NDATA gif>

22 Gamma

4.5.18 notation-decl-handler

[Handler Keyword]#:notation-decl-handler
Sets a handler that receives notation declarations.

Handler prototype is:

[Handler prototype]notation-decl notation-name base system-id
public-id

4.5.19 not-standalone-handler

[Handler Keyword]#:not-standalone-handler
Sets a handler that is called if the document is not standalone, i.e. when
there is an external subset or a reference to a parameter entity, but does
not have ‘standalone’ set to "yes" in an XML declaration.

The handler takes no arguments:

[Handler prototype]not-standalone

4.6 miscellaneous functions

[Scheme function]xml-expat-version-string
Return the version of the expat library as a string.
For example:

(xml-expat-version-string) ⇒ "expat_2.0.1"

[Scheme function]xml-expat-version
Return the version of the expat library as a triplet: ‘(major minor
micro)’.
For example:

(xml-expat-version) ⇒ (2 0 1)

[Scheme function]xml-default-current
Pass current markup to the default handler (see Section 4.5.8 [default-
handler], page 18). This function may be called only from a callback
handler.

[Scheme function]xml-error-string code)
Return a textual description corresponding to the code argument. See
[catching gamma-xml-error], page 16, for an example of using this func-
tion.

[Scheme function]xml-current-line-number parser
Return number of the current input line in parser. Input lines are num-
bered from ‘1’.

Chapter 4: Expat Interface 23

[Scheme function]xml-current-column-number parser
Return number of column in the current input line.

[Scheme function]xml-current-byte-count parser
Return the number of bytes in the current event. Returns ‘0’ if the event
is inside a reference to an internal entity and for the end-tag event for
empty element tags (the later can be used to distinguish empty-element
tags from empty elements using separate start and end tags).

Chapter 5: How to Report a Bug 25

5 How to Report a Bug

If you think you’ve found a bug, please report it to gray+gamma@gnu.org.ua.
Be sure to include maximum information needed to reliably reproduce it, or
at least to analyze it. The information needed is:
• Version of the package you are using.
• Compilation options used when configuring the package.
• Run-time configuration.
• Conditions under which the bug appears.

mailto:gray+gamma@gnu.org.ua

Appendix A: GNU Free Documentation License 27

Appendix A GNU Free Documentation
License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other
functional and useful document free in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with or with-
out modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit
for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.
We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject (or
to related matters) and contains nothing that could fall directly within

28 Gamma

that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that
says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, that is suitable for revising the document straightforwardly with
generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that
is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modi-
fication by readers is not Transparent. An image format is not Trans-
parent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii
without markup, Texinfo input format, LaTEX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque for-
mats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output
purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

Appendix A: GNU Free Documentation License 29

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses fol-
lowing text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as “Acknowledge-
ments”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that
it remains a section “Entitled XYZ” according to this definition.
The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque

30 Gamma

copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the
public.
It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct

from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adja-

cent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add

to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If

Appendix A: GNU Free Documentation License 31

there is no section Entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section all the
substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may
not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements”
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—
for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

32 Gamma

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and
that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “His-
tory”; likewise combine any sections Entitled “Acknowledgements”, and
any sections Entitled “Dedications”. You must delete all sections Enti-
tled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting
from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the
Document is included an aggregate, this License does not apply to the
other works in the aggregate which are not themselves derivative works
of the Document.
If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire

Appendix A: GNU Free Documentation License 33

aggregate, the Document’s Cover Texts may be placed on covers that
bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, pro-
vided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this
License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Dedi-
cations”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

http://www.gnu.org/copyleft/

34 Gamma

A.1 ADDENDUM: How to use this License for
your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

Concept Index 35

Concept Index

This is a general index of all issues discussed in this manual

A
attlist declaration handler 21
attlist-decl . 21

C
callback, expat . 11
callbacks, expat . 17
character data handler 17
character-data . 17
closelog . 5
comment . 18
config file, MySQL . 7
connection to SQL, closing 8
connection to SQL, opening 7

D
default . 18
default handler . 18
default handler, with expansion 19

E
end cdata section handler 18
end doctype declaration handler 21
end element handler 17
end namespace declaration handler 20
end-cdata-section 18
end-doctype-decl . 21
end-element . 17
end-namespace-decl 20
entity declaration handler 21
entity-decl . 21
error handling, XML 14
Expat . 11
expat, basics . 11

F
facility, syslog . 3
FDL, GNU Free Documentation License

. 27

H
handler, attlist declaration 21
handler, character data 17
handler, default . 18
handler, default, with expansion 19
handler, end cdata section 18
handler, end doctype declaration 21
handler, end element 17
handler, end namespace declaration . . . 20
handler, entity declaration 21
handler, not standalone document 22
handler, notation declaration 22
handler, processing instruction 18
handler, skipped entity 19
handler, start cdata section 18
handler, start doctype declaration 20
handler, start element 17
handler, start namespace declaration . . 19
handler, XML declaration 20
handlers, expat . 11, 17

L
libexpat . 11
LOG_ALERT . 4
LOG_AUTH . 3
LOG_AUTHPRIV . 3
LOG_CONS . 3
LOG_CRIT . 4
LOG_CRON . 3
LOG_DAEMON . 3
LOG_DEBUG . 4
LOG_EMERG . 4
LOG_ERR . 4
LOG_FTP . 3
LOG_INFO . 4
LOG_LOCAL0 . 3
LOG_LOCAL1 . 3
LOG_LOCAL2 . 3
LOG_LOCAL3 . 3
LOG_LOCAL4 . 3
LOG_LOCAL5 . 3
LOG_LOCAL6 . 3
LOG_LOCAL7 . 3
LOG_LPR . 3
LOG_MAIL . 4

36 Gamma

LOG_NDELAY . 3
LOG_NEWS . 4
LOG_NOTICE . 4
LOG_NOWAIT . 3
LOG_ODELAY . 3
LOG_PERROR . 3
LOG_PID . 3
LOG_SYSLOG . 4
LOG_USER . 4
LOG_UUCP . 4
LOG_WARNING . 4

M
MySQL . 7

N
not standalone document handler 22
not-standalone . 22
notation declaration handler 22
notation-decl . 22

O
open-syslog-port . 4
openlog . 3
openlog? . 5
option file, MySQL . 7

P
parser, creating . 11
parsers, XML, creating 12
PostgreSQL . 7
priority, syslog . 4
processing instruction handler 18
processing-instruction 18

Q
query, SQL . 8

S
skipped entity handler 19

skipped-entity . 19
SQL . 7
sql-catch-failure . 8
sql-close-connection 8
sql-ignore-failure 9
sql-open-connection 7
sql-query . 8
SSL, using with SQL . 7
start cdata section handler 18
start doctype declaration handler 20
start element handler 17
start namespace declaration handler . . . 19
start-cdata-section 18
start-doctype-decl 20
start-element . 17
start-namespace-decl 19
syslog . 3
syslog . 4
syslog facility . 3
syslog priority . 4
syslog-tag . 4

X
XML . 11
XML declaration handler 20
xml error handling . 14
xml-current-byte-count 23
xml-current-column-number 23
xml-current-line-number 22
xml-decl . 20
xml-default-current 22
xml-error-descr . 15
xml-error-string . 22
xml-expat-version 22
xml-expat-version-string 22
xml-make-parser . 13
xml-parse . 14
xml-parse-more . 14
xml-primitive-make-parser 13
xml-primitive-parse 14
xml-primitive-set-handler 13
xml-set-encoding . 13
xml-set-handler . 13
xmlck.scm, example 11

	Overview
	Syslog Interface
	SQL Interface
	Expat Interface
	Expat Basics
	Creating XML Parsers
	Parser Functions
	Error Handling
	Expat Handlers
	start-element-handler
	end-element-handler
	character-data-handler
	processing-instruction-handler
	comment-handler
	start-cdata-section-handler
	end-cdata-section-handler
	default-handler
	default-handler-expand
	skipped-entity-handler
	start-namespace-decl-handler
	end-namespace-decl-handler
	xml-decl-handler
	start-doctype-decl-handler
	end-doctype-decl-handler
	attlist-decl-handler
	entity-decl-handler
	notation-decl-handler
	not-standalone-handler

	miscellaneous functions

	How to Report a Bug
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents

	Concept Index

